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Summary 

The inability to calculate a definitive value for apparent volume of distribution at 
steady state is discussed and a method presented whereby the possible minimum and 
maximum values for V,, may be determined for a drug obeying linear kinetics whose 
disposition may be characterized by means of a k-exponential equation. 

The use of compartmental models to describe the kinetics of drug disposition has 
become less common in recent years with many pharmacokineticists preferring a 
non-compartmental approach. 

Four methods available for the estimation of VI, which do not require detailed 
compartmental analysis (Riegelman et al., 1968; Wagner, 1976; Benet and Galeazzi, 
1979; Rowland, 1982) have recently been reviewed (Collier, 1983). These methods, 
apart from assuming that linear kinetics apply, all assume drug to be eliminated only 
via the central compartment and must therefore be considered to give model-depen- 
dent estimates of V*,. 

When the plasma concentration-time profile following an i.v. bolus is described 
by Eqn. 1 

C = C,ewAll + C,e-hl’ + C,emXJ’ (1) 

there are many different three-compartment open models that will fit the data 
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equally well. The four methods of determining V,, mentioned above will give the 
value approp-iate to the three-compartment mammillary model shown in Fig. 1 

which was stated by Collier (1983) to br’ the minimum possible value of V,,. The 
maximum possible value of V,, is given by 

v,s 1+-L =cL A, A, [ 
‘+ 

A, 1 
(2) 

and applies to the three-compartment catenary model shown in Fig. 2. 

Minimum value of V,, 
Consider the model shown in Fig. 1. Gibaldi and Perrier (1975) have shown that 

x,x, -I- x,x, + x,x, = k,,k2, + k,,k,, 3- k,,k,, + b,k,, + k,,k,, (3) 

and 

&U, = W+,, 

At steady-state 

k21Vz = W, 

and 

W3 = WI 

Therefore 

(4 

(5) 

(6) 

v,, = v, 1 + 2 + 2 
[ 21 31 1 

This may be rearranged to give 

v = v W,I + W,, + kA 
5s I W3, 1 

~p-p~+p--j 

I k10 

Fig. 1. A three-compartment open mammillary model. 

(7) 

(8) 



Multiplying top and bottom by k,, gives 

v,, = k,& 
k&3, + k,,k3, + k2rh3 

hok2ik3, I 

This may also be written as 

v,s _ cL &X2 f X2X3 + V3 - h&2, - k&3, 

hW3 I 

which further simplifies to 

v;* I J-+ J-+ =cL A, A2 
1 I 1 

jiJ--G--k,, 1 
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(9) 

(10) 

Eqn. 10 gives a value for V,, which is identicaf to that given by the four methods 
mentioned previously which assume drug to be eiiminated from the central compart- 
ment but do not re&re estimation of micro-rate constants. 

Maximum v&e of V’, 
Consider the model shown in Fig. 2. The application of 

transforms gives 

;“ii, = D[tk,, + k23 + sJ(kxi + k,, +s) -k,,k,,l 

x [s3 + s2(k,, + k,:, + k,, + k,, + k,,) 

the method of Laplace 

+@,2k,, + k,,k,, + k3&21+ k3&2 + k3,k23 + 1”2d%2l 

(12) 

where 71, is the Laptace transform of the amount of drug in compartment I, D is the 
dose of drug adjusters and S is the Laplace operator. 

Eqn. I2 can be simplified further to give 

K, 3 
Dtk,, + k,, + s)tkm + k.72 + s) -k&23 

ts + MS + h2)b + X3) 
(13) 

Fig. 2. A three-compartment open catenary model. 
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where 

h,X,+X,X,+X,X,= k,,k,, + k&2 + k&z, + k&J + k,,k,, + k&z (14) 

At steady-state 

k,,V, + kzv, = &,, ‘- k&G (16) 

and 

k & = (k,, + k,, )V, 

Therefore 

(17) 

I k 
VSS =v, 1+- 12 

k32k23 + (k,, + k3,,)(::::‘;23) - k32k23 @) 

(k2’ + k23) - (k,, + k,,) 1 
This can be rearranged as follows 

v _ v &3, + k,,)h + k,,) - k,,k,, + k,,h + kd +knku 
- 

\z- t 
(k,, + k&a + k23) 432k23 I 09) 

Multiplying top and bottom by X,X, A, gives 

“‘= (k,, + k,,h + k,,) - k.A, 

x k&2, + k,,k,, + k,,k,j + k,,b, + kd,2 * k23’%2 

&A,& 

(20) 

This may also be written as 

Clearance may be defined either for a single bolus dose when CL = D/AUC, or for 
a system at steady-state when 

CL = rate of elimination/Cp,, = rate of infusion/Q,, (22) 
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both clearance values being identical. For a system at steady-state the use of the 
term “apparent volume of distribution” assumes the concentration of drug to be 
identical in each compartment. Therefore not only will rate of elimination from 
compartment 1 = rate of elimination from compartment 3 for the model described in 
Fig. 2 but 

Clearance (compartment 1) = Clearance (compartment 3) (23) 

Therefore 

D 
- = Clearance = k,*V, 
AUC, 

(This can be shown to be the case for solving Eqn. 1 as shown in Appendix 2.) 
Eqn. 21 may therefore be expressed as 

(24) 

(An alternative proof is given in Appendix 1.) 
By comparing Eqns. 25 and 11 it can be seen that V,, for the model represented in 

Fig. 2 will be in excess of V, for the model represented in Fig. 1. 
Using similar algebraic techniques to those above it can be shown that the value 

of VS for all other possible three-compartment models is intermediate between the 
values of V,, for the models shown in Figs. 1 and 2. However, in performing such 
algebraic manipulation it should be remembered that the values of micro-rate 
constants will vary according to the model which is fitted although the exponents 
will remain the same in each case. 

Discussion 

It is not possible to be definitive regarding which three-compartment model 
correctly describes the disposition of an i.v. bolus dose of drug which can be 
represented by an equation of the type shown in Eqn. 1. Therefore one cannot be 
definitive regarding the correct value of V,,. However, following an i.v. bolus dose 
the use of the methods described by Wagner (1976) or Benet and Galeazzi (1979) 
will permit the minimum possible value of \$S to be estimated while the use of Eqn. 
25 will permit the maximum possible value of V, to be determined. 

Appendix 1 

Alternative proof of Eqn. 2 
An alternative approach to the proof of Eqn. 2 is as follows: consider the model 

shown in Fig. 2 where drug is infused to steady-state. The application of the method 



of Laplace transforms gives 

A, = k,(l - es’)@,, + k,, + s)(k,, + k,, + s) - ks2b 
s(S+MS+u(S+u 

x _ kA2(l - esf)(k32 + 4, + s) 
2- 

&= W,2k23(l - est) 
4s + W(s + X2& + X3) 

w 

W) 

where Ai,, x2 and A3 are the Laplace transforms of the amount of drug in 

compartments 1, 2 and 3, respectively. 
Converting to the time domain, at steady-state: 

As; = k&k,, + k2#32 + km) 432k231 
V2& 

(Ad) 

A”” _ w~20%* + kxd 
2- 

%X2& 

The apparent volume of distribution at steady-state can be obtained from: 

vs, = amount of drug in the body at steady-state 
concentration in compartment 1 at steady-state 

Substituting into Eqn. A8 from Eqns. A4-A6 gives: 

%= ‘I ’ 
k,,&,, + k,cJ + WL! 

+ (k,, + kj0)(k2, + kzJ) - kjzG 1 
This in turn simplifies to Eqn. 18 which further simplifies to give Eqn. 25. 

Appendix 2 

(As) 

W) 

(4471 

(A9) 

Solving Eqn. 1 in terms of the rate constants li,r a tl,ree-con?lpartme,tr open cutemyr’ 
mowl (Pig. 2) 

Converting Eqn. 12 into the time domain and expressing in terms of concentra- 
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tion gives: 

+ D/(ka + k,, - X,)(k, + ksz -X2) - k,,k,,] eehzt 

W, - %)O, - h2) 

+ D[(kl, + kU - X,)(k,, + ks2 - h3) - k,k,] ewx3’ 

WI - Mb -A,) 

In view of the relationships expressed in Eqns. 14 and 15 and that 

the term 6, in Eqn. 1 may be written as: 

C, = [(C, + Cz + Cs)kz,A~ + kzJc3z + k,,k, + k23k32 + Ai 

-X~fk~1+k13+k#tfk,,)-ks~k,,j[Ih,-Xz)(h3-il,)j-’ 

This simplifies to give: 

(Al21 

Similarly, 

Cl 
c,+c,+c,= 

&A - Mb + A,) +k:, + knk,, 
(A, - MX3 - x*1 

(Al31 

Combining Eqns. Al3 and Al4 and salving for k,, gives: 

x,x, - h,h, + C,(hz -X,)(h3-h,)-CI.(X1-XZ)(Xj-hz) 
k 

c,cc,+c, 
,? =--- 

0, -4) 
(Al9 

Substituting far k I2 in Eqn, Al3 or Al4 allows k 2, to be determined. 
Rearrangement of Eqn, 14 gives: 

W, + h,X, + X,X, - k,b, - k&32 + km + k,,) = k&3, + 40) W) 

Using the relationships shown in Eqn. 15 and Eqn. All, this may be written as: 



= k,,(& + A, + A, - k,, - k,, - k,,) 

This may be rearranged to give an expression for k2, 

(A17) 

- 

vG3 
X,X,+X,A,+X,X, k - -- - k,,( A, + A, + A, - k,, - k2,) 

12 

k 21 

0, +A,+& -kz, -kd 
1 

The remaining two rate constants may be determined as follows: 

V2b 
k?O = k 

23 12 

W8) 

(Al9) 

k 32 = A, + A, -t A, - k,, - k,, - k,, - k,, (A20) 
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